SI-520 Digital Pressure Sensor

Digital Pressure Sensor is particularly suitable for use in computer control systems.

SI-520 Digital Pressure Sensor

Digital pressure sensors measure the relative pressure of hydraulic and pneumatic systems. Pressure transmitters provide absolute or differential analog readings over a wide measurement range. SI-520 Digital Pressure Sensor passes high-reliability digital circuit 485 and precision temperature compensation. RS485 half-duplex working mode. This protocol complies with the MODBUS communication protocol. And uses a subset of RMOD methods in the MODBUS protocol. Digital Pressure Sensor adopts 304ss seal and welding, and has compact structure. Digital Pressure Sensor has good moisture resistance and excellent media compatibility.

Sino-Inst offers a variety of low pressure transducers for industrial pressure measurement. If you have any questions, please contact our sales engineers.

Such sensors are also commonly referred to as:RS485 pressure transmitter. MODBUS protocol transmitter. RS485 bus sensor. Digital signal pressure transmitter.

Measurement medium: weakly corrosive liquid; weakly corrosive gas.

The digital pressure sensor is a new type of RS485 digital output sensor. Compared with the transmitters that generally output analog signals on the market, it is more suitable for the signal acquisition of the majority of industrial automation users.

RS485 digital sensor has broad development prospects. It is widely used in various industrial automation environments. It involves oil pipelines, water conservancy and hydropower, railway transportation, intelligent buildings, production automation, aerospace, military industry, petrochemicals, oil wells, electricity, ships, machine tools, hydraulic machinery and many other industries.

The working principle of the digital pressure sensor is that the pressure acts directly on the diaphragm of the sensor, so that the diaphragm produces a micro-displacement proportional to the pressure of the medium. The resistance of the sensor changes, and the electronic circuit is used to detect this change. And convert the output A digital standard signal corresponding to this pressure.

Extended reading: What is an air pressure transducer?

Digital Pressure Sensor Features

  • RS485 communication interface or HART communication protocol (optional)
  • Using digital compensation and non-linear correction technology
  • -10 ℃ ~ 70 ℃ digital wide temperature compensation
  • Support networking application
  • Digital display (optional)
  • Special requirements can be customized to suit various occasions

Extended reading: Pressure indicator transmitters

Specifications of SI-520 Digital Pressure Sensor

Amount-0.1~0,0-1,6,10~100MPaAmbient temperature-20~85℃
Supply voltage24VDC(10~36VDC)Medium temperature-20~85~105℃-500
output signalRS485 half duplexResponse time<1ms
ProtocolMODBUS protocolElectrical InterfaceStainless steel waterproof sealed terminal
Precision0.1%FS、 0.25%FS、0.5%FSThreaded connectionM20 * 1.5 or according to customer requirements
Sampling rate:10 times / second.Overload capacity150%
Communication speed9600bps,n,8,1Sealing levelIP65/68
Communication speed9600bps,n,8,1Stability:≤ ± 0.15% FS / year
Serial port settingsNo parity, 8-bit data, 1 stop bit.
Serial baud rate200,240,048,009,600,000,000,000,000,000,000,000
Vibration effect≤ ± 0.15% FS / year (mechanical vibration frequency: 20Hz ~ 1000Hz)

Extended reading: High Pressure Flow Meters for Liquids-Steam-Gas

SI-520 Digital Pressure Sensor Dimensions

Digital Pressure Sensor Applicaitons

  • Various liquids, gases, or vapors compatible with 304, 316L stainless steel
  • Static & dynamic pressure measurement
  • Vacuum measurement/control
  • Barometric pressure measurement
  • Fluid level measurement
  • Gas Flow
  • Medical Instrumentation
  • HVAC

You may like: Capacitive pressure transducer [What is & How does it work]

What does 485 communication (modbus protocol) mean in a pressure transmitter?

The pressure transmitter has a common 4-20mA output and has Hart protocol. There is also 485 communication which is the modbus protocol. Today we will talk about what is 485 communication.

MCU pin outputs TTL level. TTL level means when the MCU pin outputs 0 level. In general, the voltage is 0V. When the MCU pin outputs 1 level, the voltage is 5V. Because the TTL level is generated by a signal line and a ground line. The interference signal on the signal line will be transmitted to the receiving end with the effective signal, so that the effective signal is interfered. 485 communication actually converts the TTL level from the MCU through a converter chip in the hardware layer.

485 communication features:

  1. RS-485 electrical characteristics:
    Logic “1” is represented by the voltage difference between the two lines being + (2-6) V. Logic “0” is represented by the voltage difference between the two lines being-(2-6) V. The interface signal level is lower than that of RS-232-C, so it is not easy to damage the chip of the interface circuit. And this level is compatible with TTL level, which can be easily connected to TTL circuits.
  2. The maximum data transmission rate of RS-485 is 10Mbps.
  3. The RS-485 interface is strong, which means it has good anti-noise interference.
  4. The standard value of the maximum transmission distance of the RS-485 interface is 4000 feet, in fact it can reach 3000 meters (theoretical data, in actual operation, the limit distance is only about 1200 meters). In addition, the RS-232-C interface allows only one transceiver to be connected on the bus, that is, a single station capability. The RS-485 interface allows up to 128 transceivers on the bus. That is to say, it has multi-station capability, so that users can easily set up a device network using a single RS-485 interface.

RS485 disadvantages:

RS485 bus is a conventional communication bus. It cannot do automatic arbitration of the bus. That is, data cannot be sent simultaneously to avoid bus contention. Therefore, the communication efficiency of the entire system is necessarily low, and the amount of data redundancy is large. RS485 bus is not suitable for application places with high speed requirements. At the same time, because there is usually only one host on the RS485 bus, this bus method is a typical centralized-decentralized control system. Once the host fails, the communication of the entire system is limited to a paralyzed state. Therefore, it is an important measure to do online backup of the host.

Extended Reading: Resistive Pressure Transducer

More Featured Digital Pressure Transmitters

Technical Support

What is Static Water Pressure?

What Is Static Water Pressure? Definition of Static Water Pressure: Static Water Pressure refers to the pressure on water when it is stationary or moving in a straight line at…

The Myth of Ceramic Pressure Sensor

What is a ceramic pressure sensor? Ceramic pressure sensors are sensor diaphragms made of ceramic alumina (Al2O3). Ceramic is a material with high elasticity, corrosion resistance, wear resistance, impact, and…

Static Pressure/Hydrostatic Pressure Transmitter

The Hydrostatic Pressure Transmitter measures the hydrostatic pressure exerted by a hydrostatic head. Use these hydrostatic pressure transmitters to measure the liquid level in storage tanks, processing vessels, collection tanks,…

How to convert a 4-20mA to 0-10V /1-5V signal?

4-20mA to 0-10v voltage, this is I/V conversion. That is current-voltage conversion, usually used for long-distance signal transmission in the industry. How to convert a 4-20mA to 0-10V /1-5V signal?…

What is a PID controller?

What is a PID controller? A PID controller is an instrument used in industrial control applications to regulate temperature, flow, pressure, speed, and other process variables. PID is the abbreviation…

What does SCADA stands for?

What does SCADA stand for? SCADA is the abbreviation of Supervisory Control And Data Acquisition. Namely data acquisition and monitoring control system. SCADA system is also called monitoring configuration software,…

Introduction to Piezoelectric Pressure Sensors

What is a piezoelectric pressure sensor? The piezoelectric pressure sensor is a sensor that uses the piezoelectric effect of piezoelectric materials to convert the measured pressure into an electrical signal…

What Is an Air Pressure Transducer?

An Air pressure transducer is a sensor that converts the mechanical signal of air pressure into a current signal. Pressure has a linear relationship with voltage or current, and it…

What is a pressure sensor?

What is a pressure sensor? A pressure sensor is a device that senses a pressure signal and converts the pressure signal into a usable output electrical signal according to certain…

How to Calibrate a Pressure Transmitter

What is Calibrate a Pressure Transmitter? Calibrate a Pressure Transmitter is an important step to help pressure transmitters make accurate measurements. Only when the input and output are debugged together…

Differential Pressure Transmitter Installation Guide

Differential pressure transmitter installation guide helps you solve the installation problem of DP Transmitters. Sino-Inst offers a variety of  differential pressure transmitters for pressure/level/flow measurement. If you have any questions,…

A pressure sensor is a device or device that can sense a pressure signal. And convert the pressure signal into a usable output electrical signal according to a certain rule.
A pressure sensor usually consists of a pressure-sensitive element and a signal processing unit. According to different test pressure types, pressure sensors can be divided into gauge pressure sensors, differential pressure sensors and absolute pressure sensors.
More: Industrial Pressure Sensors

gauge pressure (GP) transmitter, compares a process pressure against local ambient air pressure.

Gauge pressure transmitters have ports to sample the ambient air pressure in real-time.
Today’s highly accurate gauge pressure transmitters can be affected by fluctuations in the local ambient pressure.
Measurements above the ambient air pressure are represented, as a positive number, while a negative number represents measurements below ambient.
A gauge pressure measurement is indicated by the letter ‘g’ following the unit of measure of the reading (i.e., inH₂O(g) or psig).
More: Gauge Pressure Transmitter

Pressure sensor is a commonly used pressure instrument, which has certain applications in many industries. It is very important for the user to determine how to detect the pressure sensor when using the pressure sensor. According to the purpose of detecting the pressure sensor, the detection items are different, of course, the detection methods will be different. Today, I will mainly introduce the three detection methods commonly used by pressure sensors. I hope they can help everyone.
Pressurization test. The checklist method is to supply power to the sensor. Blow the air holes of the pressure sensor with your mouth. Use the voltage range of the multimeter to detect the voltage change at the output of the sensor. If the relative sensitivity of the pressure sensor is large, this amount of change will be significant. If nothing has changed, you need to use a pneumatic source instead.

Through the above methods, the condition of a sensor can be basically detected. If you need accurate detection, you need to use a standard pressure source to pressure the sensor. Calibrate the sensor according to the pressure and the amount of change in the output signal. When conditions permit, temperature detection of relevant parameters is performed.
Detection of zero point. Use the voltage range of the multimeter to detect the zero point output of the sensor when no pressure is applied. This output is generally a mV level voltage. If it exceeds the sensor’s technical indicators, it means that the zero deviation of the sensor is out of range.
The detection of the bridge circuit. The main test circuit of the sensor is correct. Generally, it is a Wheatstone full bridge circuit. The ohm range of the multimeter is used. The impedance between the input terminal and the impedance between the output terminal. These two impedances It is the input and output impedance of the pressure sensor. If the impedance is infinite, the bridge is disconnected, indicating that there is a problem with the sensor or that the pin definition is not judged correctly.
Extended reading: What is a pressure sensor?

Frequently
Asked
Questions

The working principle of the digital pressure sensor is that the pressure directly acts on the diaphragm of the sensor. The diaphragm generates a micro-displacement that is proportional to the pressure of the medium. The resistance of the sensor changes. This change is detected by electronic circuits. The output is converted to correspond to this Digital standard signal of pressure.
More about: How does a pressure transmitter work?

There are different types of pressure transducers based on their design.

These sensors can come in several shapes and sizes, but the technology inside can also differ. 

There 4 main types of pressure sensor based on this: 

  • Strain Gauge Pressure Transducers
  • Capacitance Pressure Transducers
  • Potentiometric Pressure Transducers
  • Resonant Wire Pressure Transducers

More about Industrial Pressure Sensors

In fact, the pressure sensor can do both digital and analog signal output.
When you order a pressure sensor, you need to confirm with the manufacturer: Do you need a local digital display? What kind of signal output is required, etc. General pressure sensors support 4-20mA, 0-5V, 0-10V and other signal outputs. Or RS485, HART and other protocols.

Extended reading: extrusion melt pressure transducer

Digital pressure switches are mainly based on electronic pressure transmitters. This provides the switch with the complete functionality of a transmitter. Simple control tasks can be performed using the integrated pressure switch. The switching points can be set individually using the digital display or an I/O link.

Extended reading: Miniature Pressure Switch

A pressure sensor is a device or device that can sense a pressure signal. And convert the pressure signal into a usable output electrical signal according to a certain rule.
A pressure sensor usually consists of a pressure-sensitive element and a signal processing unit. According to different test pressure types, pressure sensors can be divided into gauge pressure sensors, differential pressure sensors and absolute pressure sensors.
More: Industrial Pressure Sensors

gauge pressure (GP) transmitter, compares a process pressure against local ambient air pressure.
Gauge pressure transmitters have ports to sample the ambient air pressure in real-time.
Today’s highly accurate gauge pressure transmitters can be affected by fluctuations in the local ambient pressure.
Measurements above the ambient air pressure are represented, as a positive number, while a negative number represents measurements below ambient.
A gauge pressure measurement is indicated by the letter ‘g’ following the unit of measure of the reading (i.e., inH₂O(g) or psig).
More: Gauge Pressure Transmitter

Extended Reading: MEMS Pressure Sensors

Sino-Inst offers over 20 Digital Pressure Sensors. A wide variety of  Digital Pressure Sensors options are available to you. Such as free samples, paid samples. Sino-Inst is a globally recognized manufacturer of Digital Pressure Sensors, located in China.

Sino-Inst sells through a mature distribution network that reaches all 30 countries worldwide. Digital Pressure Sensors products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting from certified suppliers. With ISO9001, ISO14001 certification.

Request a Quote

Please enable JavaScript in your browser to submit the form
This entry was posted in Pressure, Pressure Sensors by KimGuo11. Bookmark the permalink.

About KimGuo11

Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects. Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.