Gauge Pressure Transmitter

What is a gauge pressure transmitter?

Gauge Pressure Transmitter/Transducer is a commonly used pressure measurement process instrument in industry. The gauge pressure transmitter measures the pressure signal at the reference end of atmospheric pressure.

An industrial gauge pressure transmitter is commonly used to monitor the process pressure of liquid, gas, steam, etc.

Sino-Inst offers a variety of Gauge pressure transmitters for industrial pressure measurement. If you have any questions, please contact our sales engineers.

Benefits of Gauge Pressure Transmitter

gauge pressure transmitter
  • High accuracy: The pressure transmitter can perform high-accuracy measurements within the measurement range of 0~60MPa.
  • Excellent overpressure performance: Can withstand 2 times the pressure range.
  • Intelligent static pressure compensation and temperature compensation protect the transmitter from the influence of temperature, static pressure and overpressure, reducing errors.
  • LCD digital display with backlight
  • Built-in three-button quick operation and local adjustment function
  • Various anti-corrosion materials are available
  • Multi-faceted self-diagnosis function
  • Optional signals 0-10V, 4-20mA, RS485, HART protocol, etc.

Read more about: Common Units Of Pressure

Specifications of Gauge Pressure Transmitter

Use object:Liquid, gas or steam
Measuring range0-3.5~35kPa
0-10~100kPa
0-35~350kPa
0-0.1~1.0MPa
0-0.35~3.5MPa
0-1.0~10MPa
0-2.1~21MPa
0- 4.1~41Mpa
0- 6.0~60MPa
Output signal:4-20mAdc. Output, superimposed HART protocol digital signal (two-wire system)
Power source: External power supply 24V dc. Power supply range 12V ~ 45V
Installation in dangerous placesFlameproof ExdIIBT5Gb; (explosion-proof certificate no. :CE16.1163) Intrinsically safe ExiaIICT4/T5/T6Ga; (explosion-proof certificate no. : CE15.2354X)
Accuracy: ±0.1%, ±0.075%
Stability: ±0.2%/12 months of the maximum
range
Temperature effect:Including zero and range
for maximum temperature error of ±0.2% /
20 ℃
Power supply impact:Less than 0.005% / V of
the output range.
Vibration effect: In any axial direction, the
frequency is 200Hz, and the error is ±0.05% /
g of the maximum range.
Electronic circuit board work in: – 40 ~ 85 ℃;
Sensitive components work in :– 40 ~ 85 ℃;
Storage temperature :– 40 ~ 85 ℃;
With digital display: – 25 ~ 75 ℃ (run);
– 40 ~ 85 ℃ (no damage);
Relative humidity: 0 ~ 95%
Overpressure limit:2~5 times the maximum
range of the pressure transmitter is not damaged.
Volume change:Less than 0.16cm3
Damping:The time constant is adjustable from
0.1 to 32.0s.
Startup time: 3s, no preheating required.
Flush membrane pressure connection interface

Extended reading: How to calibrate HART pressure transmitters

Common Industrial Applications of Gauge Pressure Transmitter

Gauge pressure transmitter is the most commonly used detection instrument in industrial process control, which is widely used in various automatic control systems. Such as aerospace, military industry, petrochemical, chemical industry, oil well, electricity, shipbuilding, building materials, pipelines and many other industries.

It is generally used to measure pressure or absolute pressure in environments where the medium temperature is not too high, the corrosiveness is not strong, the viscosity is not high, and it is not easy to crystallize.

If low temperature, high temperature, corrosive medium measurement is required. Please contact our engineers for customization!

  • Mechanical and plant engineering
  • Chemical industry
  • Medical technology
  • Food and beverage
  • Oil and gas industry
  • Packaging and paper industry
  • Pharmaceutical industry

Read more about: What is industrial pressure transmitter?

Explosion Proof Pressure Transmitter for Hazardous locations

Gauge pressure transmitter working principle

SMT3151 TGP-Gauge Pressure Transmitter / Transducer is a diffusion silicon pressure transmitter. The working principle of the diffused silicon pressure sensor is based on the piezoresistive effect.

Using the principle of piezoresistive effect, the pressure of the measured medium directly acts on the diaphragm of the sensor (stainless steel or ceramic).

Make the diaphragm produce a slight displacement proportional to the pressure of the medium. To change the resistance value of the sensor. Use electronic circuits to detect this change. And convert and output a standard measurement signal corresponding to this pressure.

More about : Pressure transmitter Working Principle.

Difference between absolute, gauge, and differential pressure

Comparison of absolute, gage and differential pressure
Comparison of absolute, gauge and differential pressure

Absolute pressure

Absolute pressure is referred to as the vacuum of free space (zero pressure). In practice, absolute piezoresistive pressure sensors, measure the pressure relative to a high vacuum reference, sealed behind its sensing diaphragm.

The vacuum has to be negligible compared to the pressure to be measured. Sino-Instrument’s absolute pressure sensors, offer ranges from 1 bar or even 700 mbar as well as barometric pressure ranges.

Gauge pressure

Gauge pressure is measured relative to the ambient atmospheric. The average atmospheric at sea level is 1013.25 mbar. Changes of the atmospheric, due to weather conditions, or altitude influences the output of a gauge pressure sensor.

A gauge pressure higher than ambient pressure is referred to as positive pressure. If the measured pressure is below atmospheric, it is called negative or vacuum gauge pressure. In general, a vacuum is a volume of space that is essentially empty of matter.

According to its quality vacuum is divided into different ranges such as an e.g. low, high and ultra high vacuum.

Differential pressure

Differential pressure is the difference between any two process pressures p1 and p2. Differential pressure sensors must offer two separate pressure ports, with a tube or thread. Sino-Instrument’s amplified pressure sensors, are able to measure positive and negative pressure differences. i.e. p1>p2 and p1<p2.

These sensors are called bidirectional differential pressure sensors, with ranges of e.g. -1…+1.0 bar or -2.5…+2.5 mbar. In contrast, unidirectional differential pressure sensor only operate in the positive range (p1>p2). E.g. from 0…1.0 bar or 0…2.5 mbar. And the higher has to be applied to the pressure port defined as “high pressure”.

Gauge Pressure VS Absolute Pressure

  1. Gauge pressure refers to pipeline pressure. It refers to the pressure measured with pressure gauges, vacuum gauges, U-shaped tubes and other instruments, also called relative pressure). “Gauge pressure” starts from atmospheric pressure.
  2. The pressure directly acting on the surface of the container or object is called “absolute pressure”. The absolute pressure value starts with absolute vacuum.
    Absolute pressure actually refers to the gauge pressure plus the local atmospheric pressure (generally a standard atmospheric pressure can be 101.3Kpa).

Absolute pressure = gauge pressure + one atmosphere
If the unit is MPa, absolute pressure = gauge pressure + 0.1MPa

Read more about: Absolute Pressure Vs Gauge Pressure Measuring Instruments

Transmitters can convert physical signals into electrical signals.
For example, our pressure transmitter can convert pressure signals into 4-20mA. Liquid level transmitter can convert liquid level signals into 4-20mA.

Gauges are generally mechanical. There is no output of electrical signals. For example, pressure gauges and liquid level gauges. The measurement results can be measured and read intuitively.

When selecting a pressure transmitter, the concept of pressure type is involved: absolute pressure, gauge pressure, negative pressure and differential pressure.

Absolute pressure transmitter measures the absolute pressure of the medium in the equipment. Its reference pressure is an absolute value of 0. It has nothing to do with atmospheric pressure. Therefore, there will be a vacuum sealed cavity on the low-pressure side of the pressure core.

Gauge pressure transmitter measures the pressure based on atmospheric pressure. One side of the pressure transmitter is connected to the atmosphere, and the other side is connected to the measured pressure, so the reference pressure side is open to the atmosphere. It is generally used to measure the liquid level of pipelines and non-pressure tanks.

If you pay close attention to the outer shell of some gauge pressure transmitters, it is not difficult to find some small holes on it. These vents are reserved to keep the reference side connected to the atmosphere.

More Featured Pressure Transmitters and Pressure Measurement Solutions

We at Sino-Inst manufacture and supply various types of gauge pressure transmitters for various industries. Customized production is available based on your measurement requirements, including pressure range, temperature, accuracy, signal output, mounting thread, material, etc.

If you need to purchase a gauge pressure transmitter, or have any technical questions, please feel free to contact us.

Request a Quote